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Point defects and lock-in faults in columnar phases 

by J. PROST 
Laboratoire de Physico-Chimie ThCorique, URA 1382 du CNRS, Ecole 
Superieure de Physique et de Chimie Industrielles de la Ville de Paris, 

10, rue Vauquelin, F-75231 Paris Cedex 05, France 

(Received 12 October 1989; accepted 17 January 1990) 

We show the existence of point defects connected by strings in columnar 
phases. The most interesting consequence is  the increase, by several orders of 
magnitudes, of the bend elastic modulus as compared to values for nematics. 

1. Introduction 
Dislocations in columnar phases have already been discussed [l-31. Screw dis- 

locations are particularly original since they do not involve any column discontinuity 
[ l ,  21. A pair of them of opposite directions and the same Burgers' vector, distant from 
a lattice spacing, as shown in figure 1 (a), constitutes a linear defect, topologically 
stable, which we shall call a lock-in fault line. The corresponding structure is unper- 
turbed, except in a plane where the columns jump from one lock-in site to the next 
(or more generally to an equivalent one). These lines can end on point defects, which 
are column extremities (see figure I(6)). This situation is fairly similar to that of 
Dirac's monopoles [4]. The point defect of order two in figure 2 is topologically stable, 
in contrast to that shown in figure l(c). Any dislocation configuration can be 
represented as an ensemble of column extremities and lock-in fault lines, and vice 
versa. In this paper, we calculate the deformation field corresponding to an infinite 
and semi-infinite lock-in fault line, and discuss the macroscopic behaviour of columnar 
phases in the presence of densities of such defects. 

2. Strain field of a lock-in fault line 
The strain can be described by two vectors in a columnar phase: m' and m' 

represent local compressions and rotations of the lattice: m: ( m : )  compression along 
x( y ) ,  ml (ml)  the rotation around a y (x )  axis, +(m: - m : )  the lattice rotation around 
the z axis. In the absence of dislocations m' = V u , ,  rn' = V u ,  and u , ,  u ,  are the 
column displacements. The dislocations obey similar laws as in crystals [5 ,6 ]  

Curlm" = J", ( 1 )  
in which J" is a vector current oriented along the line, with a modulus equal to that 
of the dislocation Burgers' vector. Current lines obey the conservation rule 

DivJ" = 0. (2) 
As a consequence, the strain field surrounding a lock-in fault line of infinite extent 

Curlm' = 0. I 
0267-8292190 S3.W 1990 Taylor & Francis Lld 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
0
1
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



124 J. Prost 

X 

Y 

i 

Figure 1. (a) A screw dislocation in a columnar phase, using a square lattice for simplicity. 
(b)  A lock-in fault line in the same lattice; the two axes parallel to the x axis determine 
the screw dislocation dipole aspect of this line. (c) A lock-in fault line in the xz plane. This 
line ends on a right column extremity (positive on the left side, negative on the right; the 
signs are defined with respect to z ) .  

Figure 2. A topologically stable point defect of charge + 2. 
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Point defects and lock-in faults 125 

This expression corresponds to a square lattice, more generally we should replace a2 
by S the area occupied by a column (a2J3 for a triangular lattice). 

Mechanical equilibrium requires 

a a a a 3  0 = Bax(m:  + m:) + C - ( m :  - $) + C - ( $  + dx) - k3?m" ax av  aZ 2 1  1 

which corresponds to the elastic energy [7] 

The solution in Fourier space (2; = k 3 / C )  is 

m: = $ = m: = m: = 0,  

or in real space 

This expression is a derivative of that corresponding to the strain field of a screw 
dislocation, as expected. 

The line tension is 

and the integral depends on the ultraviolet cut-off A. A consistent choice is 

Ay a a - ' ,  A, a a-1/2X-' /2  3 (9) 

y a ~ a ~ / ~  (10) 

which leads to 

We still have to add the core energy: we can easily become convinced that the 
characteristic length of the lock-in fault is precisely A,. Indeed, the lock-in energy is 

Fb = s { a 2  (%I - a2dcos( ?)} dz, 

that is a Euler-Lagrange equation 
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126 J .  Prost 

with 4 = (2nu)/a, and a characteristic length ( & ~ / 2 n ) ” ~ ,  hence an energy scaling like 
equation ( 1  0). 

Thus 

(13) 3/2 2- I/2 Y = ?Ca 3 

in which q is a numerical coefficient. This result is similar to that obtained with screw 
dislocations. I t  corresponds to a line perpendicular to the column axis. It is possible 
that tilted lines have a lower energy, but the following considerations should not be 
significantly modified if this is the case. y is an elastic energy; the corresponding free 
energy is 

in which q’ is another number of order unity. There is a priori no guarantee that f be 
positive. In fact upon approaching the melting transition y decreases whereas the 
entropic term increases. Thusfbecomes negative before the mean field transition. The 
same remark holds for dislocations, but it seems reasonable to assume that the line 
energy of lock-in faults is smaller than that of dislocations. As a result it vanishes at 
lower temperatures, and it seems legitimate to study the influence of densities of such 
lines on the macroscopic behaviour of columnar phases. We discuss this matter in 54. 

3. A semi-infinite line 
We consider a line extending along the positive side of the i axis. The source term 

reads now (still considering a square lattice for the sake of simplicity) 

Y,  is the unit step function. The source term along?, deserves particular attention. On 
the one hand it is written in such a way that the dislocation line circuit is conservative; 
it is an edge dislocation segment of unit length. On the other hand, it does correspond 
to a column extremity. Indeed, from equation ( 1  5) we easily find 

a a a 
ax - ay - mT + - m: - - aZ (m: + m::) = ~ ~ 6 , ~ 6 , . 6 , ,  

or, introducing n the uni t  vector along the column axis 

Div( :) = 6,,6x62. 

In this equation the meaning of the column extremity is clear. The sign, i.e. column 
beginning or ending, depends on the choice of n. 

The generalization gives 

where p(r)  is the algebraic density of column extremities. As already pointed out in 
( I ) ,  the splay deformation is directly related to p(r). 
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The strain field corresponding to equation ( 1  5 ) ,  can again be calculated in Fourier 
space. We find that the lattice dilation 8 = nz: + m: depends only on the point source 

with 

or in real space 

with 

xl = J(x2 + y 2 ) ,  Kl/4 and I * 1 / 4  are modified Bessel functions [S]. Similarly, the 
longitudinal part of the column tilt, 6n, = m : i  + mij depends again only on the 
point source 

or 

6n, (x, , z )  = - a2V, G(x,, z ) .  (23) 
For z2 b l , x , ,  G - I/z and the dilation decreases like I/z4, whereas the columns are 
not tilted. For z2 << A,x,, G - ~ / ( L , X ~ ) ’ / ~ ;  the lattice dilation is negligible whereas 
the tilt decreases like x;’/’. Sufficiently far from the extremity the strain of the infinite 
line is of course recovered. 

These dependences show that the direct interaction energy between two extremities 
(one being at the origin, the other at the point x l  , z )  decreases like z - , ,  if z2 9 2 l , x , ,  
and like x;”~, if z2 4 2A,x1. These are long range interactions. For two extremities 
belonging to the same line, the dominant interaction is, however, that due to the line 
tension, since i t  corresponds to a force independent of distance. 

4. Lock-in fault line densities 
This is a particular case of dislocation loop densities, for which a magnetic analogy 

is useful [6,9]. However, we can easily be convinced that only the tube extremities 
experience a Peach-Kohler force, in a homogeneous stress (a force linked to stress 
gradients does exist on the lines but i t  does not lead to a renormalization of the elastic 
moduli). Under those conditions, an electrostatic analogy is simpler. The force 
exerted on the charges is 

F- = EQ’(O,, + o,,); F, = -Ea20mI; CL E (x ,y) .  (24) 

The vector 
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128 J.  Prost 

is the analogue of the electric field; E = + 1 (resp. - 1) corresponds to a column 
beginning (resp. ending). The analogy with electrostatics allows us to write 

c . ~ . ~  = B(m: + m$ - p z )  + C(m: - %), 
0.")' = 

c a r  = -K, Q (m: - Pa).  

} (25)  
B(m: + ml; - P , )  + C(ml; - m:), 

a 2  

The other components of the stress tensor are not modified. As in electrostatics, p is 
the first moment of the charge distribution 

r p( r )  dv. 

In thermal equilibrium, p a  = 0, and a non-zero p is induced by the external field a 

xII, xl are the polarizabilities parallel and perpendicular respectively to the column 
axis. From equations (25) and (27) we obtain effective elastic constants 

(28) 1 B'" = B/( l  + Xl,B), 

C'" = C/(l + Xl,B), 

m q )  = K3Kl + X L k 3 d ) .  

In the dilute regime, it is clear that Bxll a 4 so that no spectacular effect is expected. 
The concentration regime (if attainable), and with n(1)  dl a a-2r-2 exp (- I / T )  dl 
(where n(l)dl is the number of segments of length between I and I + dl per unit 
volume) does not give much more spectacular results. For instance, if we consider, 
polymer-like segments, we can write the change in free energy of a segment [ 101 as 

Z2 

R2 
Aw = 3 k T -  - a:a2z 

in which R is the gyration radius: R2 = al. Hence, minimizing with respect to z, we 
find 

and 

a3 
k B  T 

m 

p z  = z(l)a2n(l)dl  = - a:, 

which leads to Bzl, - 1. 

because of anisotropic line tension ya,  we can write 
If we consider the opposite limit in which the lines are essentially in the x , y  plane, 

Aw = $yala2 - a:a2z, (33) 
where a is the tilt angle of the line with respect to the x , y  plane. In this limit a = zl, 
hence z = ld</ya after minimization, this relation is similar to equation (30) provided 
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Point defects and lock-in faults 129 

we replace kT/a  by ya. Thus Bzll - Ba2/ya which may be larger than one if (y,/a?) d B, 
but never very large, since for vanishing ya we would recover the polymer limit. 

This shows that an important decrease of B and C can take place only in a 
regime in which the density of column extremities is very high. It is then likely that 
dislocations come in, which leads probably to a dislocation melting picture of the 
Nelson-Toner type [l I]. We should not however discard the possibility of ionization 
of the column extremities via a discontinuous process. 

Figure 3. In the absence of  permeation, the curvilinear length z can be considered as constant 
(i.e. an incompressible fluid). This necessitates an increase in the length of the lock-in 
fault segment: 6x = )p-$ = ~z*x[(a/az)rn:]*.  

The bending modulus behaviour is more interesting in the absence of permeation. 
Equalities (28) show that K3 is not modified in the long wavelength limit. K3 must then 
be calculated at fixed line configurations. Since these lines connect bunches of 
columns, we expect an increase in the bending modulus, compared to the nematic 
values. In the following we propose only very approximate arguments which have 
no pretence of being rigorous. We replace the complex ensemble of polydisperse 
segments by a monodisperse quadrilateral of width x and height z ( z  is the average 
size of a column). Bending such a system necessitates a tilt p = (zd/2dz)rnl of the lines 
with respect to the columns normal and an increase (see figure 3) 

Hence a free energy increase (in the limit of rigid lines) is given by 

6 w = yaxp2 + 2y6x, (35) 

6W = ( T ) x z 2 ( i m q  Ya + Y 

and an elastic constant 

(where n is the number of quadrilaterals per unit volume). With n N Q,/[2a2(z + x) ]  
in which Q, is the volume fraction of quadrilaterals we obtain 
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130 J .  Prost 

This estimate suggests a very large increase of the bend modulus. Taking ( ya  + y) z 
dyn. This 

is an enormous value compared to that for nematic, but it is indeed compatible with 
the Orsay experiments [12]. 

dyn, x N z N cm, a N 3 x lo-’ and Q, M 0.1 gives K3 M 

5. Discussion 
The lock-in fault lines are original, topologically stable defects, which can be 

described in terms of dislocation dipoles just like dislocations may be thought of as 
disclination dipoles; they can end on point defects. This situation is analogous to that 
corresponding to the Dirac monopoles. The most interesting consequence, in the 
absence of permeation, an anomalous increase of the bend modulus of several orders 
of magnitude as compared to the nematic value. This is a plausible explanation of the 
enormous K, values found at Orsay [12]. 

The estimate we propose here is very approximate: we should obviously take 
account of the distribution of lines, and also of dislocations, but we believe that it 
keeps the essential physics. It would be interesting to try to provide experimental 
evidence for the column extremities and the lock-in fault lines. This could be achieved 
by direct observation with electron microscopy and by looking for their signature in 
X-ray diffraction patterns. Vortex states in type two superconductors have the same 
columnar structure. Topological defects are very similar, but because of the absence 
of magnetic dipoles, there are neither vortex extremities nor edge dislocations. Screw 
dislocations and lock-in fault lines are allowed. 

We have benefited from very useful discussions with J .  Bok, J .  P. Carton, P. G. 
de Gennes, L. Leibler, T. Maggs and J. L. Viovy. 
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